Circuit breaker control guidelines for VacClad-W metal-clad switchgear

Circuit breaker control

Control breaker control equipment

Eaton's VCP-W circuit breaker has a motor charged spring type stored energy closing mechanism. Closing the breaker charges accelerating springs. Protective relays or the control switch will energize a shunt trip coil to release the accelerating springs and open the breaker. This requires a reliable source of control power for the breaker to function as a protective device. **Figure 2** and **Figure 3** show typical ac and dc control schematics for type VCP-W circuit breakers.

For ac control, a capacitor trip device is used with each circuit breaker shunt trip to ensure that energy will be available for tripping during fault conditions. A control power transformer is required on the source side of each incoming line breaker. Closing bus tie or bus sectionalizing breakers will require automatic transfer of control power. This control power transformer may also supply other ac auxiliary power requirements for the switchgear.

For dc control, it would require a dc control battery, battery charger, and an ac auxiliary power source for the battery charger. The battery provides a very reliable dc control source, because it is isolated from the ac power system by the battery charger. However, the battery will require periodic routine maintenance, and battery capacity is reduced by low ambient temperature.

Any economic comparison of ac and dc control for switchgear should consider that the ac capacitor trip is a static device with negligible maintenance and long life, while the dc battery will require maintenance and replacement at some time in the future.

Relays

Microprocessor-based or solid-state relays would generally require dc power or reliable uninterruptible ac supply for their logic circuits.

Auxiliary switches

Optional circuit breaker and cell auxiliary switches are available where needed for interlocking or control of auxiliary devices. Typical applications and operation are described in **Figure 1** and **Table 1**.

Breaker auxiliary switches and MOC switches are used for breaker open/close status and interlocking.

Auxiliary contacts available for controls or external use from auxiliary switch located on the circuit breaker are typically limited in number by the breaker control requirements as follows:

- Breakers with ac control voltage: 1NO and 3NC
- Breakers with dc control voltage: 2NO and 3NC

When additional auxiliary contacts are needed, the following options are available:

- 5/15/27 kV breakers: Each breaker compartment can be provided with up to three mechanism operated cell (MOC) switches, each with 5NO and 4NC contacts. The MOC switches are rotary switches, mounted in the cell, and operated by a plunger on the breaker. Two types of MOC switches can be provided—MOC that operates with breaker in connected position only, or MOC that operates with breaker in connected, as well as test position
- 38 kV breakers: Each 38 kV breaker can be provided with an additional breaker mounted auxiliary switch, with 5NO and 5NC contacts

Another optional switch available is called a TOC–Truck Operated Switch, which is mounted in the cell and operates when the circuit breaker is levered into or out of the operating position. This switch changes its state when the breaker is moved from test to connected position and vice versa. The TOC provides 4NO and 5NC contacts.

Auxiliary switch contacts are primarily used to provide interlocking in control circuits, switch indicating lights, auxiliary relays or other small loads. Suitability for switching remote auxiliary devices, such as motor heaters or solenoids, may be checked with the interrupting capacity listed in **Table 1**. Where higher interrupting capacities are required, an interposing contactor should be specified.

Figure 1. Breaker auxiliary switch operating times

Table 1. Auxiliary switch contacts interrupting capacities

Auviliary	Continuous	Control circuit voltage					
switch type	current amperes	120 Vac	240 Vac	48 Vdc	125 Vdc	250 Vdc	
Non-inductive circuit in	nterrupting capacity in	n amperes					
Breaker auxiliary switch	20	15	10	16	10	5	
TOC switch	20	15	10	16	10	5	
MOC switch	20	15	10	16	10	5	
Inductive circuit interro	upting capacity in amp	peres					
Breaker auxiliary switch	20	15	10	16	10	5	
TOC switch	20	15	10	16	10	5	
MOC switch	20	15	10	16	10	5	
TOC switch MOC switch	20 20 20	15 15 15	10 10 10	16 16 16	10 10 10	5 5 5	

Table 2. VCP-W breaker stored energy mechanism control power requirements

Rated control voltage	Spring ch	Spring charging motor			UV trip	Voltage range		Indicating
	Inrush amperes	Run amperes	Average run time, sec.	or trip amperes	mA maximum	Close	Trip	light amperes
48 Vdc	36.0	9	6	16	200	38-56	28-56	0.02
125 Vdc	16.0	4	6	7	80	100-140	70-140	0.02
250 Vdc	9.2	2	6	4	40	200-280	140-280	0.02
120 Vac	16.0	4	6	6	_	104-127	104-127	0.02
240 Vac	9.2	2	6	3	_	208-254	208–254	0.02

Control schematics

Lege	end		Opera	tion	
CS C	=	Breaker control switch-close	LS1 bb	=	Closed until :
CS T	=	Breaker control switch-trip	LS2 aa	=	Open until sp
Y	=	Anti pump relay	LS2 bb	=	Closed until :
SR	=	Spring release coil (coil)	LC	=	Open until m
M	=	Spring charge motor	PS1	=	Open in all ex

- М = Spring charge motor
- ST = Shunt trip
- PR = Protective relay
- ٨ = Secondary disconnect

// acron						
=	Closed	until	springs	are	fully	charged

- orings are fully charged
- springs are fully charged
- echanism is reset
- = Open in all except between "test" and "connected" positions
- PS2 = Closed in all except between "test" and "connected" positions

Figure 3. Typical 38 kV VCP-W "dc" and "ac" control schematics

bb

aa LS2

bb LC

PS1

Lea	e	n	d

Legend	
--------	--

Lege	nd	
CS C	=	Breaker control switch-close
CS T	=	Breaker control switch-trip
Y	=	Anti pump relay
SR	=	Spring release coil (coil)
Μ	=	Spring charge motor
ST	=	Shunt trin

- = Shunt trip
- PR Protective relay = ^
 - Secondary disconnect =

Powerina Business Worldwide

ration	
--------	--

- Ope LS1 = Closed until springs are fully charged LS2 = Open until springs are fully charged

 - = Closed until springs are fully charged
 - = Open until mechanism is reset
 - Open in all except between "test" and "connected" positions =
- PS2 = Closed in all except between "test" and "connected" positions

Eaton 1000 Eaton Boulevard Cleveland, OH 44122 United States Eaton.com

© 2018 Eaton Previous copyright © 2012 All Rights Reserved Printed in USA Publication No. AP083012EN / Z21340 September 2018

Eaton is a registered trademark.

All other trademarks are property of their respective owners.